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Abstract
This paper reviews recent developments in the physics of quantum turbulence (QT). QT was
discovered in superfluid 4He in the 1950s, while the research has taken a new direction since the
middle of the 1990s. QT is comprised of quantized vortices that are definite topological defects
and expected to give a prototype of turbulence much simpler than usual classical turbulence. We
give a general introduction and brief review of classical turbulence followed by a description of
the dynamics of quantized vortices. After mentioning the modern research trends in QT, we
discuss the energy spectra, the energy cascade and the possible dissipation mechanism of QT
at very low temperatures. The last part is devoted to QT in atomic Bose–Einstein condensates.

1. Introduction

Turbulence has long been a great mystery in nature and has
been studied in many fields over the centuries [1], but it
is still not yet well understood. This is chiefly because
turbulence is a complicated dynamical phenomenon with
strong nonlinearity and is far from equilibrium. Leonardo da
Vinci observed the turbulent flow of water and drew many
sketches showing that turbulence had a structure comprised
of eddies. However, these eddies are not well defined in a
classical fluid and the relation between turbulence and vortices
is not clear.

In the field of low temperature physics, turbulence in
superfluid helium has been studied. Superfluid turbulence
is often called quantum turbulence, because it is strongly
influenced by quantum effects and comprised with quantized
vortices. A quantized vortex is a definite topological defect
appearing in a Bose–Einstein condensate, very different from
an eddy in classical fluid. Quantum turbulence is now
studied in superfluid 4He, 3He and even in atomic Bose–
Einstein condensates (BECs). This paper reviews the recent
developments and the understanding of this fascinating topic.
This article cannot cover all modern topics of QT. For
example, recent excellent developments in superfluid 3He are
not described here. For more comprehensive reviews, readers
should refer to [2] and [3].

2. Superfluid helium and its turbulence

This section describes briefly superfluid helium, quantized
vortices and the previous studies on quantum turbulence.

2.1. Superfluid helium and quantized vortices

Liquid 4He enters a superfluid state below the λ point (2.17 K)
with Bose–Einstein condensation of the 4He atoms [4]. The
hydrodynamics of superfluid helium is well described by
the two-fluid model, for which the system consists of an
inviscid superfluid (density ρs) and a viscous normal fluid
(density ρn) with two independent velocity fields vs and vn.
The mixing ratio of the two fluids depends on temperature.
As the temperature is reduced below the λ point, the ratio
of the superfluid component increases, and the whole fluid
becomes a superfluid below about 1 K. The Bose-condensed
system exhibits the macroscopic wavefunction �(x, t) =
|�(x, t)|eiθ(x,t) as an order parameter. The superfluid velocity
field is given by vs = (h̄/m)∇θ , with boson mass m
representing the potential flow. Since the macroscopic
wavefunction should be single-valued for the space coordinate
x, the circulation � = ∮

v · d� for an arbitrary closed loop in
the fluid is quantized by the quantum κ = h/m. A vortex with
such quantized circulation is called a quantized vortex. Any
rotational motion of a superfluid is sustained only by quantized
vortices.

0953-8984/09/164207+07$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/16/164207
mailto:tsubota@sci.osaka-cu.ac.jp
http://stacks.iop.org/JPhysCM/21/164207


J. Phys.: Condens. Matter 21 (2009) 164207 M Tsubota

A quantized vortex is a topological defect characteristic
of a Bose–Einstein condensate and is different from a vortex
in a classical viscous fluid. First, the circulation is quantized.
Second, a quantized vortex is a vortex of inviscid superflow,
being free from the decay mechanism of the viscous diffusion
of vorticity that occurs in a classical fluid. Third, the core of
a quantized vortex is very thin, of the order of the coherence
length, which is only a few angstroms in superfluid 4He and
sub-μm in atomic BECs. These properties make a quantized
vortex more stable and definite than a classical vortex.

2.2. Previous studies on quantum turbulence

Early experimental studies on superfluid turbulence chiefly
focused on thermal counterflow, in which the normal fluid
and superfluid flow in opposite directions. The flow is driven
by injected heat current, and it was found that the superflow
becomes dissipative when the relative velocity between the two
fluids exceeds a critical value [5]. Feynman proposed that this
is a superfluid turbulent state consisting of a tangle of quantized
vortices [6]. Vinen later confirmed Feynman’s proposition
experimentally by showing that the dissipation comes from
mutual friction between vortices and the normal flow [7–9].
Subsequently, many experimental studies have been made on
superfluid turbulence (ST) in thermal counterflow systems,
and have revealed much physics [10]. Since the dynamics of
quantized vortices is nonlinear and nonlocal, it has not been
easy to understand quantitatively the observations from vortex
dynamics. Schwarz clarified the picture of ST consisting of
tangled vortices by a numerical simulation of the quantized
vortex filament model in thermal counterflow [11, 12]. ST is
also often called quantum turbulence (QT), which emphasizes
the fact that it is comprised of quantized vortices.

2.3. Dynamics of quantized vortices

Understanding the dynamics of quantized vortices is indispens-
able for revealing QT. Two formulations are generally avail-
able. One is the vortex filament model and the other is the
Gross–Pitaevskii (GP) model. We will briefly describe these
two formulations.

The vortex filament model represents a quantized vortex
as a filament passing through the fluid, having a definite
direction corresponding to its vorticity. Although this model
has been used in classical fluid dynamics [13], it is only a
convenient idealization. However, the model is accurate and
realistic for a quantized vortex in superfluid helium. Except
for the thin core region, the superflow velocity field has a
classically well-defined meaning and can be described by ideal
fluid dynamics [11, 14]. The superfluid velocity at a point
on a filament is given by the Biot–Savart expression. The
vortex moves with the superfluid velocity at its point. At
finite temperatures mutual friction operates between the vortex
core and the normal flow. Starting with several remnant
vortices, Schwarz studied numerically how they developed to a
statistical steady vortex tangle under thermal counterflow [12].
The tangle was self-sustained by the competition between the
excitation due to the applied flow and the dissipation through
mutual friction. The numerical results were quantitatively

consistent with some typical experimental results. Here we
shall introduce some quantities characteristic of a vortex
tangle. The line length density L is defined as the total length
of vortex cores in a unit volume. The mean spacing � between
vortices is given by � = L−1/2.

The other is the Gross–Pitaevskii (GP) model. In
a weakly interacting Bose system, the macroscopic wave-
function �(x, t) appears as the order parameter of Bose–
Einstein condensation, obeying the Gross–Pitaevskii (GP)
equation [15]:

ih̄
∂�(x, t)

∂ t
=

(

− h̄2

2m
∇2 + g|�(x, t)|2 − μ

)

�(x, t). (1)

Here g = 4π h̄2m/a represents the strength of the interaction
characterized by the s-wave scattering length a, m is the mass
of each particle and μ is the chemical potential. The only
characteristic scale of the GP model is the coherence length
defined by ξ = h̄/(

√
2mg|�|), which gives the vortex core

size. The GP model can explain not only the vortex dynamics
but also phenomena concerned with vortex cores such as
reconnection and nucleation. However, the GP equation is
not applicable quantitatively to superfluid 4He, which is not
a weakly interacting Bose system. It is applicable rather to
Bose–Einstein condensation of a dilute atomic Bose gas [15].

3. Classical turbulence

Before going to the modern research on QT, we shall remember
classical turbulence (CT) [1]. Classical viscous fluid dynamics
is described by the Navier–Stokes equation. For high flow
velocity or the Reynolds number, flow is generally turbulent,
in which the flow is highly complicated with many eddies.

It is almost impossible and meaningless to follow
the change of the fluid velocity in a turbulent flow
and predict something; it becomes important to consider
statistical laws instead of the dynamics of each variable.
Turbulent flow is known to show some characteristic statistical
behaviour [16, 17]. We suppose a steady state of fully
developed turbulence of an incompressible classical fluid. The
energy is injected into the fluid at a rate ε, which is at a scale
comparable to the system size in the energy-containing range.
In the inertial range, this energy is transferred to smaller scales
without being dissipated. In this range, the system is locally
homogeneous and isotropic, which leads to the statistics of the
energy spectrum known as the Kolmogorov law:

E(k) = Cε2/3k−5/3. (2)

Here, the energy spectrum E(k) is defined as E = ∫
dk E(k),

where E is the kinetic energy per unit mass and k is the
wavenumber from the Fourier transformation of the velocity
field. The energy transferred to smaller scales in the energy-
dissipative range is dissipated through the viscosity of the
fluid with dissipation rate ε in equation (2), which is equal
to the energy flux  in the inertial range. The Kolmogorov
constant C is a dimensionless parameter of order unity.
The Kolmogorov spectrum is confirmed experimentally and
numerically in turbulence with high Reynolds numbers. The
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inertial range is thought to be sustained by the self-similar
Richardson cascade in which large eddies are broken up into
smaller ones through many vortex reconnections. In CT,
however, the Richardson cascade is not well fixed because it
is impossible to definitely identify each eddy.

4. Towards modern research on QT

Most older experimental studies on QT were devoted to
thermal counterflow. Since this flow has no classical analogue,
these studies did not greatly contribute to the understanding
of the relation between CT and QT. From the middle of
1990s, important experimental studies were published on QT
not featuring thermal counterflow, differing significantly from
previous studies [3, 18, 19].

The first important contribution was made by Maurer and
Tabeling [20], who confirmed experimentally the Kolmogorov
spectrum in superfluid 4He for the first time. A turbulent flow
was produced in a cylinder by driving two counter-rotating
disks. The authors observed the local pressure fluctuations
to obtain the energy spectrum. The experiments were made
at three different temperatures 2.3, 2.08 and 1.4 K. Both
above and below the λ point, the Kolmogorov spectrum was
confirmed.

The next significant piece of work was a series of
experiments of grid turbulence performed for superfluid 4He
above 1 K by the Oregon group [21–24]. Flow through a
grid is usually used for generating turbulence in classical fluid
dynamics [1]. At a sufficient distance behind the grid the flow
displays a form of homogeneous isotropic turbulence. This
method has also been applied to superfluid helium. In the
Oregon experiments the helium was contained in a channel,
along which a grid was pulled at a constant velocity. A pair of
second-sound transducers was set into the walls of the channel
to observe a vortex tangle. In combining the observations
with the decay of the turbulence, the authors made some
assumptions. The analysis is too complicated to be described
in detail here. The thing is that the coupling between the
superfluid and the normal fluid by mutual friction makes a
quasi-classical flow appear at length scales much larger than �

and causes the fluid to behave like a one-component fluid [25].
Then the line length density is found to decay as t−3/2. A
simple analysis shows that the t−3/2 decay comes from a quasi-
classical model with the Kolmogorov spectrum [18].

After these developments, lots of experimental, theoretical
and numerical works appeared in this field. The present
main research areas into QT are as follows. The first is
the energy spectra and the dissipation mechanism at zero
temperature [26]. The second is QT created by vibrating
structures [27]. The third is visualization of QT [28]. Since
the main theme here is to develop the research on QT from
superfluid helium to atomic BECs, we will focus on the first
issue in the rest of the article.

5. Energy spectra of QT at zero temperature

What happens to QT at zero temperature is not so trivial [26].
The first problem is the nature of the energy spectrum of

turbulence for the pure superfluid component. The second
problem is the dissipation in this system. Since there is no
normal fluid component, any dissipative mechanism does not
work at large scales. However, some dissipative mechanism
should operate at small scales. The first possibility is acoustic
emission at vortex reconnections. In classical fluid dynamics it
is known that vortex reconnections cause acoustic emission. In
quantum fluids, numerical simulations of the GP model show
acoustic emission at every reconnection event [29]. However,
this mechanism is thought not to be important in superfluid
helium because of the very short coherence length; it may
be more efficient in atomic BECs in which the coherence
length is generally not much shorter than the system size.
The second possible mechanism is the radiation of sound
(phonons) by the oscillatory motion of vortex cores. The
third problem is how the energy is transferred from large to
small scales where some dissipative mechanism operates. If
the energy spectrum obeys the Kolmogorov law, the energy
should be transferred through the genuine Richardson cascade
of quantized vortices; this is very different from the classical
case, because the Richardson cascade is only schematic in CT.
Vortex reconnections sustaining the Richardson cascade should
be less effective at scales shorter than the mean vortex spacing
�. What transfers the energy there? These problems are closely
related and are described below.

5.1. Kolmogorov law in the inertial range

No experimental studies have yet addressed this issue directly,
though three numerical studies have been made to date.
The first study was done by Nore et al using the GP
model [30, 31]. They solved numerically the GP equation
starting from Taylor–Green vortices and followed their time
development. The quantized vortices become tangled and the
energy spectra of the incompressible kinetic energy seemed to
obey the Kolmogorov law for a short period, though eventually
deviating from it. The second study was done by the vortex
filament model [32]. Araki et al made a vortex tangle arising
from Taylor–Green vortices and obtained an energy spectrum
consistent with the Kolmogorov law. The third was by the
modified GP model [33, 34]. This should be most relevant to
atomic BECs, described here.

The Kolmogorov spectra were confirmed for both
decaying [33] and steady [34] QT by the modified GP model.
The normalized GP equation is

i
∂

∂ t
�(x, t) = [−∇2 − μ + g|�(x, t)|2]�(x, t), (3)

which determines the dynamics of the macroscopic wavefunc-
tion �(x, t) = f (x, t) exp[iφ(x, t)]. The condensate density
is |�(x, t)|2 = f (x, t)2 and the superfluid velocity v(x, t)
is given by v(x, t) = 2∇φ(x, t). The vorticity ω(x, t) =
rotv(x, t) vanishes everywhere in a single-connected region of
the fluid and thus every rotational flow is carried by quantized
vortices. In the core of each vortex, �(x, t) vanishes so that
the circulation around the core is quantized by 4π . The vortex
core size is given by the healing length ξ = 1/ f

√
g.
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a b

Figure 1. Time development of E(t), Ekin(t), E c
kin(t) and E i

kin(t) at (a) the initial stage 0 � t � 5 and (b) a later stage 25 � t � 30 [34].

It should be noted that the hydrodynamics by the GP
model is compressible. The total energy is

E(t) = 1

N

∫
dx �∗(x, t)

[
− ∇2 + g

2
f (x, t)2

]
�(x, t), (4)

which is represented by the sum of the interaction energy
Eint(t), the quantum energy Eq(t) and the kinetic energy
Ekin(t) [30, 31]:

Eint(t) = g

2N

∫
dx f (x, t)4,

Eq(t) = 1

N

∫
dx [∇ f (x, t)]2,

Ekin(t) = 1

N

∫
dx [ f (x, t)∇φ(x, t)]2.

(5)

The kinetic energy is furthermore divided into a compress-
ible part Ec

kin(t) due to compressible excitations and an incom-
pressible part E i

kin(t) due to vortices. The Kolmogorov spec-
trum could be expected for E i

kin(t).
The failure to obtain the Kolmogorov law for the pure GP

model [30, 31] could be attributable to the following reasons.
Their simulation showed that E i

kin(t) decreased and Ec
kin(t)

increased with conserving the total energy E(t). This was
because many compressible excitations were created through
vortex reconnections [29, 35] and disturbed the Richardson
cascade of quantized vortices. Kobayashi and Tsubota
overcame the difficulties and obtained the Kolmogorov spectra
in QT to clearly reveal the energy cascade [33, 34]. They
made a numerical calculation for the Fourier transformed GP
equation with dissipation:

(i − γ̃ (k))
∂

∂ t
�̃(k, t) = [k2 − μ(t)]�̃(k, t)

+ g

V 2

∑

k1,k2

�̃(k1, t)�̃∗(k2, t) × �̃(k − k1 + k2, t). (6)

Here �̃(k, t) is the spatial Fourier component of �(x, t) and
V is the system volume. The healing length is given by
ξ = 1/|�|√g. The dissipation should have the form γ̃ (k) =
γ0θ(k − 2π/ξ) with the step function θ , which dissipates only
the excitations smaller than ξ . This form of dissipation can be
justified by the coupled analysis of the GP equation and the
Bogoliubov–de Gennes equations for thermal excitations [36].

First Kobayashi et al confirmed the Kolmogorov spectra
for decaying turbulence [33]. To obtain a turbulent state, they
started the calculation from an initial configuration in which
the density was uniform and the phase of the wavefunction had
a random spatial distribution. The initial state was dynamically
unstable and soon developed into turbulence with many vortex
loops. Then the spectrum E i

kin(k, t) was found to obey the
Kolmogorov law.

A more elaborate analysis was made for steady QT by
introducing energy injection at large scales as well as energy
dissipation at small scales [34]. Energy injection at large scales
was effected by moving a random potential V (x, t) that had a
characteristic spatial scale X0. Once a steady QT is made by
the balance between the energy injection and the dissipation, it
should have an energy-containing range k < 2π/X0, inertial
range 2π/X0 < k < 2π/ξ and energy-dissipative range
2π/ξ < k. A typical simulation of steady turbulence was
performed for X0 = 4. The dynamics started from the uniform
wavefunction. Figure 1 shows the time development of each
energy component. The moving random potential nucleates
sound waves as well as vortices, but both figures show that
the incompressible kinetic energy E i

kin(t) due to vortices is
dominant in the total kinetic energy Ekin(t). The four energies
are almost constant for t � 25 and steady QT was obtained.

The cascade can be confirmed quantitatively by checking
that the energy dissipation rate ε of E i

kin(t) is comparable to
the flux of energy (k, t) through the Richardson cascade
in the inertial range. The energy flux (k, t) is found to
be approximately independent of k and comparable to ε. As
shown in figure 2(b), the energy spectrum is quantitatively
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a b

Figure 2. (a) A typical vortex tangle. (b) Energy spectrum E i
kin(k, t) for QT. The plotted points are from an ensemble average of 50 randomly

selected states at t > 25. The solid line is the Kolmogorov law [34].

consistent with the Kolmogorov law in the inertial range
2π/X0 < k < 2π/ξ , which is equivalent to 0.79 < k < 6.3.

5.2. The Kelvin-wave cascade

The arguments in the last subsection were chiefly limited
to the large scale, usually larger than the mean spacing
� of a vortex tangle, in which the Richardson cascade is
effective. Here we should ask what happens at smaller
scales for which the Richardson cascade should be less
effective. The most probable scenario is the Kelvin-wave
cascade. A Kelvin-wave is a deformation of a vortex line
into a helix with the deformation propagating as a wave along
the vortex line [37]. Kelvin-waves were first observed by
making torsional oscillations in uniformly rotating superfluid
4He [38, 39]. The approximate dispersion relation for
a rectilinear vortex is ωk = (κk2)/(4π)(ln(1/ka0) + c)
with a constant c ∼ 1. This k is a wavenumber of an
excited Kelvin-wave, being different from the wavenumber
used for the energy spectrum in the last subsection. At
a finite temperature a significant fraction of normal fluid
damps Kelvin-waves through mutual friction. At very low
temperatures, however, mutual friction does not occur and
the only possible mechanism of dissipation is radiation of
phonons [40]. Phonon radiation becomes effective only when
the frequency becomes very high, typically of the order of
GHz (k ∼ 10−1 nm−1), so a mechanism is required to
transfer the energy to such high wavenumbers for Kelvin-
waves to damp. An early numerical simulation based on
the vortex filament model showed that Kelvin-waves are
unstable to the buildup of side bands [41]. This indicates
the possibility that nonlinear interactions between different
Kelvin-wavenumbers can transfer energy from small to large
wavenumbers, namely the Kelvin-wave cascade. This idea
was first suggested by Svistunov [42] and later developed and
confirmed through theoretical and numerical works by Vinen,
Tsubota and Mitani [43] and Kozik and Svistunov [44–46].

It is difficult to observe the Kelvin-wave cascade. Such
studies are not easy for a vortex tangle. The easiest approach
would be to consider rotation. In a rotating vessel, quantized
vortices form a vortex lattice parallel to the rotational axis.
By oscillating the vortices, Kelvin-waves can be excited. The
challenge is detecting the Kelvin-wave cascade. There are
two possible methods. The first is the direct visualization of
vortices. Recently Bewley et al visualized quantized vortices
by trapping micron-sized solid hydrogen particles [47]. They
also observed a vortex array under rotation. The direct
observation of vortex dynamics could reveal the Kelvin-wave
cascade. The second method is to observe acoustic emission
resulting from a Kelvin-wave cascade. Since the frequency
of emitted phonons is estimated to be of GHz order, this
observation may not be easy and it presents a challenging
experimental problem. Observing the Kelvin-wave cascade
may be more accessible in atomic BECs.

It is important to ask the nature of the transition between
the Richardson (classical) and the Kelvin-wave (quantum)
cascades. Several theoretical considerations on the classical-
quantum crossover have been made [48, 49], yet there are few
numerical or experimental works. This topic is not yet fixed,
and is still controversial, so not discussed here.

6. QT in atomic BECs

The achievement of Bose–Einstein condensation in trapped
atomic gases in 1995 stimulated intense experimental and
theoretical activity in modern physics [15]. As a proof of
superfluidity, quantized vortices were created and observed
in atomic BECs, and lots of effort has been devoted to
this fascinating problem [50]. Atomic BECs have several
advantages over superfluid helium. First, the modern optical
technique enables us to visualize directly quantized vortices.
Secondly, the system is a weakly interacting Bose gas, which
makes the GP model quantitatively correct. For example, the
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a b

Figure 3. QT in atomic BECs. (a) Rotating the condensate around two axes. (b) Energy spectrum of a steady QT. The dots refer to the
numerically obtained spectrum, while the solid line is the Kolmogorov spectrum [54].

observation of the dynamics of a vortex lattice formation in
a rotating BEC [51] is well described by the GP model [52].
However, the studies of quantized vortices in cold atoms have
not yet been so exhaustive, which can be seen easily by looking
back over what has been studied in superfluid helium. The
long research history of superfluid helium tells us two main
cooperative phenomena of quantized vortices; the first is a
vortex lattice in rotating superfluid and the other is a vortex
tangle in QT. To date most studies of quantized vortices in
atomic BECs have been limited to the former, and only a few
for the latter. Recently it has been shown theoretically that QT
can be created also in trapped BECs and the energy spectrum
obeys the Kolmogorov law [53, 55]. This section summarizes
the topic.

A problem is how to make QT in trapped BECs; the
method should be experimentally accessible. Although a
few methods were proposed initially [56, 57], Kobayashi and
Tsubota suggested an easier and more powerful method in
order to make a steady QT in trapped BECs, namely combined
rotations around two axes. The dynamics of the wavefunction
is described by the GP equation

[i − γ (x)]h̄ ∂

∂ t
�(x, t) =

[

− h̄2

2m
∇2 − μ + g|�(x, t)|2

+ U(x) − �(x) · L(x, t)

]

�(x, t). (7)

Here L(x) = ih̄x × ∇ is the angular momentum and
the trapping potential U(x) is given by a weakly elliptical
harmonic potential:

U(x) = mω2

2
[(1 − δ1)(1 − δ2)x2

+ (1 + δ1)(1 − δ2)y2 + (1 + δ2)z
2], (8)

where ω is the frequency of the harmonic trap and the
parameters δ1 and δ2 exhibit elliptical deformation in the

xy-and zx-planes. To develop the BEC into a turbulent
state, two rotations along the z- and x-axes are applied, as
shown in figure 3(a). The rotation vector �(t) is given by
�(t) = (�x,�z sin �x t,�z cos �x t), where �z and �x are
the frequencies of the first and second rotation, respectively.
Note that this is not a simple sum of two rotations. Actually
this sort of rotation is used for turbulence in water [58].

Starting from a stationary solution without rotation and
elliptical deformation, Kobayashi et al turned on the rotation
�x = �z = 0.6 and elliptical deformation δ1 = δ2 =
0.025, and numerically calculated the time development of
the GP equation (7). By monitoring the total compressible
and incompressible kinetic energy per unit mass and some
anisotropic parameters, the system is found to become almost
steady and isotropic after ωt � 150. For the steady state, the
spectrum E i

kin(k, t) was calculated to be consistent with the
Kolmogorov law (figure 3(b)). The inertial range is determined
by the Thomas–Fermi radius RTF and the coherence length ξ .
The application of combined rotation around three axes enables
us to obtain more isotropic QT [55]. Here we should worry
about how to observe the energy spectrum. The technique
of Bragg spectroscopy [59] would enable us to observe the
local superfluid velocity in the condensate and thus the energy
spectrum.

There are several advantages of studying QT in atomic
BECs instead of in superfluid helium. First, it is possible to
observe the vortex configuration, probably even the Richardson
cascade. There are a few theoretical or numerical works
which show some power law of the vortex size distribution
characteristics of the Richardson cascade [32, 60, 61], there
is no experimental proof though. The research in this
direction is quite important, because we can study directly
the relation between the real-space Richardson cascade and
the wavenumber-space cascade (the Kolmogorov spectrum).
Secondly, we can control the transition to turbulence by
changing the rotation frequencies or other parameters. For
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example, we know that rotation along one axis forms a vortex
lattice. When we apply another rotation, it may just rotate the
lattice if the frequency is low. If the frequency is high enough,
however, the second rotation should destroy the lattice towards
a vortex tangle. It would be possible to investigate in detail the
transition to turbulence. Thirdly, by changing the shape of the
trapping potential, we can study the effect of the anisotropy on
turbulence; a typical question is how the Kolmogorov spectrum
is changed when the BEC becomes anisotropic. This interest
should lead to studies of the transition between 2D and 3D
turbulence.

7. Conclusions

This article has reviewed recent developments in the research
of quantum turbulence. The research of QT now ranges
from traditional superfluid helium to atomic BECs. These
interdisciplinary studies will undoubtedly make a breakthrough
in solving the great mystery of turbulence in nature which
researchers since Leonard Da Vinci have been investigating.
Furthermore the study of QT could also contribute to
cosmology, because the evolution of cosmic strings in the early
universe may be related to QT [62].
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